Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mustafa Odabașoğlu ${ }^{\text {a }}$ * and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.109$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

3-tert-Butyl-2-hydroxy-5-methylbenzaldehyde: a redetermination

In the molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$, all atoms except one methyl group and two H atoms are located on a crystallographic mirror plane; thus the molecule is essentially planar. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds stabilize the packing. The structure has been previously reported in the non-centrosymmetric space group $P 2_{1}$; our study shows that the correct space group is $P 2_{1} / m$.

Comment

Hydroxy-substituted benzaldehyde reagents used for condensation with primary amines, hydrazines, hydroxylamine and other primary amine derivatives afford imine derivatives which can function as ligands towards a number of metal cations (Loudon, 2002; Khandar \& Nejati, 2000; Khandar \& Rezvani, 1999).

(I)

The structure of (I) has been previously reported [Cambridge Structural Database (Version 5.26; Allen, 2002) refcode ZOJRAR (Matilainen et al., 1996)]; however, the choice of the space group $P 2_{1}$ appears to be wrong and the correct space group is $P 2_{1} / m$. All atoms except for one methyl group and two H atoms are located on a crystallographic mirror plane; thus the molecule except for one methyl group is essentially planar (Fig. 1). A significant intramolecular interaction is noted, involving phenol atom H 1 and carbonyl atom O 2 , such that a six-membered ring is formed (Table 1 and Fig. 1). The aromatic ring $\mathrm{C}-\mathrm{C}$ bond distances in (I) agree with those observed in bis(3-formyl-4-hydroxy-5-methoxyphenyl)methane (Odabaşoğlu et al., 2006). The C7-O1 bond distance in (I) is also consistent with the value of the $\mathrm{C}=\mathrm{O}$ double bond in carbonyl compounds (Loudon, 2002).

Experimental

A mixture of 2-tert-butyl-4-methylphenol $(0.1 \mathrm{~mol})$ and CHCl_{3} $(0.4 \mathrm{~mol})$ and $\mathrm{NaOH}(0.8 \mathrm{~mol})$ in ethyl alcohol was stirred at reflux temperature for $2 \mathrm{~h} .20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (50 ml) was added to this

Received 9 December 2005 Accepted 14 December 2005 Online 21 December 2005
\qquad
reaction mixture and the crude product was purified with a neutral alumina column. Well shaped crystals of (I) were obtained by slow evaporation of an ethyl alcohol solution (yield $0.96 \mathrm{~g}, 5 \%$, m.p. 345 K).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
$M_{r}=192.25$
Monoclinic, $P 2_{\mathrm{L}} / m$
$a=8.3633(8) \AA$
$b=6.6200(6) \AA \AA$
$c=9.7328(11) \AA$
$\beta=97.170(9)^{\circ} \AA^{\circ}$
$V=534.64(9) \AA^{3}$
$Z=2$

$$
D_{x}=1.194 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5006
reflections
$\theta=3.0-28.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, yellow
$0.77 \times 0.50 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer φ scans
5006 measured reflections
1136 independent reflections
1037 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.029 \\
& \theta_{\max } 26.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-8 \rightarrow 8 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0624 P)^{2}\right. \\
& +0.143 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots O1	$0.85(1)$	$1.80(1)$	$2.5954(16)$	$155(2)$
C4-H4 ${ }^{\mathrm{H}}{ }^{\mathrm{H}}$	0.93	2.49	$3.3717(18)$	159

Symmetry code: (i) $x-1,-y+\frac{1}{2}, z$.
All H atoms were located in a Fourier difference map, but the H atoms of the aromatic ring and the C9 methyl group were then placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93(2)-0.96(2) \AA$ and $U_{\text {iso }}(H)=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms. The positions of the H atoms on O2 (which takes part in a hydrogen bond) and on C10 and C 11 were refined using $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ restraints of 0.96 (2) and $0.85(2) \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl C) and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1
A view of (I), showing the atomic numbering scheme and the intramolecular hydrogen bond as a dashed line. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram of (I), showing the hydrogen-bonding scheme (dashed lines).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Khandar, A. A. \& Nejati, K. (2000). Polyhedron, 19, 607-613.
Khandar, A. A. \& Rezvani, Z. (1999). Polyhedron, 18, 129-133.
Loudon, M. G. (2002). Organic Chemistry, , 4th ed., pp. 837, 874-880. Oxford University Press.
Matilainen, L., Klinga, M. \& Leskela, M. (1996). J. Chem. Soc. Dalton Trans. pp. 219-225.
Odabaşoğlu, M., Albayrak, C, \& Büyükgüngör, O. (2006). Acta Cryst. E62, o239-o240.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

